
Creating a Simple Computer Program Using the C Language

Creating a simple executable program using the C language is a straight-forward process. This process can be
broken down into four processes:

1. Edit Create or edit a source file using a text editor.

2. Preprocess Replace macros, process header files, and remove comments.

3. Compile Check the validity of the code and translate the source (text) file into
machine (binary) code.

4. Link Combine other object code and libraries to make one final
executable program.

5. Execute Run the program making sure it functions correctly.

These processes are commonly referred to as the edit/preprocess/compile/link/execute loop. Figure 1 on the next
page shows the flow chart of this process. It is called a loop because if the execution of the program (step five)
does not work properly, you must start at step one and repeat the loop.

Step1: Editing
The first step is to create a file using a text editor. (Do not use a word processor, such as Microsoft Word. Word
processors save files in their native format which is incompatible with programming tools.) The file you create
should end with a .c extension and is referred to as your source file. Every Windows machine has a program called
Notepad which can be used to edit source files. However, Notepad is a very rudimentary text file editor and is not
recommended for daily use. The computers at DigiPen have a program called Notepad++, which is a much more
powerful and capable text editor. This is the recommended editing tool for this class. However, any text editor
(other than Notepad) can be used. Once you have typed in your code and saved it, you will now be ready for the
next step: preprocessing.

Step2: Preprocess
The next step is to prepare the source file for the compiler. This is done with a program called a preprocessor. It
performs a variety of tasks, most notably, it finds and includes header files, replaces macros in the code, and
removes comments and extraneous white space. Essentially, any line that begins with a pound sign, #, is
considered a directive and is acted upon by the preprocessor. The compiler never sees these directives or
comments. Most of the time you won't manually perform this action. Instead, you will just jump to step 3 and the
compiler will implicitly invoke the preprocessor itself before compiling the code. I'm including it here because it
is a required step that is always performed.

Step 3: Compiling
The next step is to convert the (preprocessed) English-like text file into a language that the computer understands.
The computer has a hard time with the English language so a program called a compiler is used to translate (or
compile) the English-like C source file into machine code. This machine code, or object code, is in the computer’s
native language. A program called gcc (GNU C compiler) can be used to compile source code into object code.
There is also a program called g++, which is the GNU C++ compiler, used for C++ source code. To compile your
C source file, simply type:

gcc -c myfile.c

in the command window, where myfile.c is the name of your source file. That’s all there is to it. You have now
created a new file called myfile.o. If you were to look at this new file with your text editor, it would look like
garbage on the screen. That’s because it is now in machine code (binary), which doesn’t make much sense to
humans (or text editors). If you received any error messages while you were compiling, then you have some bad
code that needs to be fixed. The compiler will tell you which lines in your text file caused the offending error.
Simply load your source file back into your text editor, make the necessary changes, and compile your program
again. Continue this process until the compiler stops complaining about your code. Now, you’re ready for step
four: linking.

Edit/Preprocess/Compile/Link/Execute Loop Edit/Preprocess /Compile/Link/Execute Loop
(Extended)

FIGURE 1 Flow Chart Representing the Edit/Preprocess/Compile/Link/Execute Loop

Step 4: Linking
Linking is the process by which your object code gets “connected” with other necessary code to create the final
executable program. All programs use some kind of external code. This other necessary code could be in the form
of standard libraries, other people’s code, or some additional code of your own. Linking can be done
automatically, (immediately after compiling) if your code is error-free. Unless you explicitly tell the compiler not
to do any linking, most C compilers will automatically link your program after they have successfully compiled it.
That’s why you used a -c in step two above when you compiled your source code. This tells the compiler to
compile only, with no linking. Now, to link your object file with other external code, simply type:

 gcc myfile.o

Although I said that gcc was a compiler, it is, in fact, a front-end to the compiler and linker. Also, GCC no longer
stands for GNU C Compiler; it stands for GNU Compiler Collection (because it can compile several different
languages (such as C, C++, Java, Ada, etc.) gcc is smart enough to see that you are supplying an object file (the
.o extension), so it knows that it should invoke the linking phase and not the compiling phase. If you want to
compile and link with a single command, simply remove the -c from the command. This tells the compiler to link
your program after it has been successfully compiled:

 gcc myfile.c

Notice the missing -c switch and the .c extension. If any errors were encountered during the compile phase, the
linker would not be invoked. If the linker found any errors during the linking process, you will have to make the
necessary fixes to your source code and repeat the process. If everything is successful, you will now have another
new file. This file will be called a.exe. This is an executable file, ready to run and is the default name given to
programs that have been compiled and linked successfully.

Step 5: Executing
Executing is the easiest step. All you need to do is type a.exe and the program will execute. The hard part is
testing whether or not the program is executing correctly, especially if the program is a non-trivial program. If you
made a syntax mistake in your source file, the compiler will complain loudly and immediately. If you made a
logic mistake in your thinking, you could spend many sleepless nights figuring out why things aren’t working
right. If you can prove that your program works correctly in all cases, your work is done. If not, you must start at
step one again and repeat the process until the program runs correctly.

Summary
This process is basically quite simple. Most of the work is done by the computer, translating your source code into
machine code. At this stage, knowing the intimate details about what the compiler and linker are doing are not
necessary. As we move forward, we will encounter problems that can only be solved if you understand what is
going on "behind the scenes." The important thing to understand for now is what steps are taken and the order in
which these steps occur.

