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P R O B L E M

Mr. K is the manager of a new Snowball Express sno-cone stand
which will soon be opening for business. The stand is operated by a single
attendant who sits behind a window. People come up to the window, tell
the attendant which flavor sno-cone they want, wait for the attendant to
fill their order, then pay and leave.

In operating systems terminology, the attendant is the CPU and the arriving
people represent the workload submitted.

When there is more than one customer at the window, a line forms so
that customers are served in the order that they arrived. People always
buy one and only one sno-cone at $3 each. The cost of materials to
make sno-cones is negligible, so Mr. K considers all of the money taken
in to be profit, except that the attendant has to be paid from the money
received. A picture of the sno-cone stand is shown in Figure 1.1.

After interviewing several applicants for the attendant's position,
Mr. K has narrowed his choice to two people: Fran and Bill.
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Figure 1.1 The Sno-Cone Stand

The operating systems counterpart is to choose between two CPUs of vary
ing costs and speeds.

Mr. K has discovered (during the interviews) that Fran can complete a
transaction (take the order, make the sno-cone, take payment, and make
change) in 20 seconds on the average. Bill can perform the same job in
30 seconds on the average. Fran is faster than Bill but demands $12 per
hour in wages, whereas Bill will work for $6 per hour.

Market research has revealed that, on the average, Mr. K can expect
one customer per minute to come up to the window.

This represents the workload characterization phase.

Mr. K has also learned that his prospective customers are the kind that
do not like to wait in long lines. If a customer comes to the window and
there are already three people in line, he or she will promptly turn about
in a huff and storm off to the Smoothy-Cream, a nearby competitor.

The buffer size is assumed to be three.
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Taking all of these facts into consideration, which person is the more
cost-effective to hire: Fran or Bill?

The objective function is to maximize profit, which is the difference between
extra money earned by having a faster processor and the cost of having a
faster processor.

1.1 APPLICATION TO OPERATING SYSTEMS

Modern multiprogrammed computer systems comprise several devices from
which processes (i.e., jobs) receive service. For example, a process may require
computation service from the central processing unit (CPU), then input/output
(I/O) service from a disk, and so on. Since the computer system is multipro
grammed, there are usually several processes competing for the same resources.
For example, more than one job may wish to use the CPU at the same time.

In this problem, the sno-cone-stand attendant is analogous to one device
(also called a "station" or "server") in the computer system, and the customers
wishing to buy sno-cones are analogous to the processes demanding service
from that device. The maximum line length of three is analogous to a device
that has a limited amount of "waiting" space, where processes wait until they
can be served by the device.

This is also referred to as a finite-length queue or buffer.

In the design of a computer system, choices have to be made. The choice here
is: Do we use a slower but cheaper device, or a faster but more expensive
device? The decision is based on several things. How much demand will be
placed on that device? Will the improved performance yielded by the faster
device offset its additional expense?

1.2 SOLUTION

Fran is 33% faster than Bill, yet to employ Fran costs 100% more than to
employ Bill. This seems to imply that Bill is the better choice. However, this
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natural intuitive reasoning is not always correct. Specific quantitative reasoning
is needed. In order to choose Bill over Fran, we must be able to make and back
up such statements as the following:

The amount of money made while Fran operates the stand minus her pay is less
than the amount of money made while Bill operates the stand minus his pay.
Therefore, Bill is the better choice.

Or, in the operating systems scenario, the improved throughput with a faster pro
cessor does not offset the extra cost of that processor.

How can such a statement be supported? The first step is to identify the quan
tities of interest:

1. Amount of money made while Fran works
2. Amount of money made while Bill works
3. Cost to employ Fran
4. Cost to employ Bill

In order to make calculations and comparisons with these figures, the
quantities they represent must all be with respect to the same unit of time. It
does not really matter what standard unit of time is chosen. What is important is
that once the unit is chosen, all measurements are converted to reflect that unit.
The problem above suggests second, minute, or hour. Arbitrarily, 1 minute is
selected as the standard time unit. The statement we now wish to prove (or
disprove) is:

The average amount of money made each minute while Fran operates the stand
minus her pay per minute is less than the average amount of money made each
minute while Bill operates the stand minus his pay per minute. Therefore, Bill is
the better choice.

Fran's and Bill's pay per minute are easily obtained by dividing each
hourly payrate by 60. Fran makes $12 per hour (i.e., 20 cents per minute) and
Bill makes $6 per hour (i.e., 10 cents per minute). These are the latter two of
the four quantities required.

We now need to calculate the average amount of money taken in for each
minute that each attendant works. Although the customers will come to the
sno-cone stand at the same rate regardless of who is working, they are more
likely to find the line of an acceptable length (fewer than three people in line
before they get into line themselves) if Fran is working than if Bill is working.
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The buffer length is an important parameter and must be considered.

(Remember that if the line is of length three, potential customers turn away and
go to Smoothy-Cream, and that results in lost revenue.) This is because Fran
is faster than Bill (on the average) and will be able to handle more customers,
thus keeping the line length shorter. So, ultimately, the amount of money taken
in each minute depends on the average number of customers that are actually
served every minute.

The $3 cost per sno-cone is a scaling factor for throughput in this problem. In
the operating systems scenario it is the weight given to a completed job relative
to the negative cost of providing service.

But does the amount of extra money made when Fran works (due to customers
not going to Smoothy-Cream) offset the extra cost of employing her over Bill?

Let's first assume that exactly one customer arrives every minute, on the
minute. Let's also assume that Fran can service each customer in exactly 20
seconds, and that Bill can service each customer in exactly 30 seconds. Then,
obviously, the line will never grow longer than one person, that being the person
currently being served, regardless of whether Fran or Bill works.

That is, if we assume that the distributions of interarrival and service times are
constants, Bill is the better choice.

If we made these assumptions—that the average customer arrival rate and the
average service times are the same exact values for every customer—we would
certainly advise Mr. K to hire Bill. Bill will get exactly one customer every 60
seconds, but he only needs exactly 30 seconds to take care of each customer.
This leaves exactly 30 seconds out of every minute in which Bill can goof off,
because there will be no one waiting in line.
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With these assumptions, the throughput using either CPU would be the same. That
is, the CPU unit is not the bottleneck and it would be best to select the cheaper,
slower CPU.

As a matter of fact, there will never be a line—only the one customer being
served (half the time). Since no customer will ever find the line longer than one
person, no customer will turn away, and Bill will bring in just as much money
as would Fran. This analysis seems to confirm the original conclusion that Bill
would be the better choice.

But there is something about the previous analysis that is bothersome—
the excessive use of the word assume. Think about it: It is very unlikely that
the amount of time between when one customer walks up and when the next
customer walks up is exactly the same for all customers. Also, it is very unlikely
that the attendant takes exactly the same amount of time to make a sno-cone
for each customer. Of course, such a sno-cone stand does not exist!

Modeling the variability between job arrivals and modeling the variability of the
job service requirements is crucial.

The truth is that in the real world things do not tend to happen with such
predictability. The one customer per minute is an average, as is the average
number of seconds it takes each attendant to make a sno-cone. Sometimes it
takes longer, and sometimes it does not take that long.

It is easy to fall into the trap of thinking that an average is the only kind
of characteristic measurement needed when solving problems such as the one
involving the sno-cone stand. The amount of time between customer arrivals
is really random, with the average of all those random times (if you observed
the sno-cone stand for several days) being an average (e.g., one customer every
minute). There is a second pitfall: Even knowing that these times are random,
people assume that there are just as many "long" times as there are "short"
times. That is, they assume that the times are equally distributed about the
average. This type of reasoning leads to the assumption that customer arrivals
and the time required to make a sno-cone come from a normal distribution.

The normal distribution is also referred to as the Gaussian distribution.
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The assumption of a normal distribution of the time between customer
arrivals and the time it takes to make sno-cones is also not a wise one. The
problem arises when one thinks of average and usual as being interchange
able words. But the truth is that the average time to make a sno-cone is not
necessarily the time it usually takes to make a sno-cone.

The difference between the mean of a distribution and the median of a distribution
is the issue here. Since times are nonnegative quantities, there is a left boundary
(i.e., zero) on the possible values measured. Thus it is often the case that the
median is less than the mean. That is, it requires a lot of small numbers to offset
a single very large number to maintain the same mean.

Studies have shown that even though the average customer arrival rate is one
per minute, the amount of time between customers is usually less than that. It is
the occasional lull in business that makes the average time between customers
seem longer than that which is usually observed. The same is true of the time it
takes to make sno-cones. It is those few times when the attendant has to crush
more ice, or open a new bottle of cherry flavoring, or engage in any unusual
task (e.g., a bathroom break) that tends to slow him or her down that makes the
average time to make a sno-cone appear longer than it usually is.

As a further example, consider the list of numbers 1, 2, 3, 2, 12. The
average of these numbers is 4, yet if we were to write each number on a slip of
paper, mix them up in a hat, and draw one at random, there is a 4 in 5 chance
that the number we draw will be less than 4, and only a 1 in 5 chance that the
number will be greater than 4.

There is one special distribution, the exponential distribution, which does
a good job of matching this phenomenon of observed times that are shorter than
the average time.

Actually, we should be using the term negative exponential, but since most other
people use the term exponential, so will we.

We will not go into detail about it (you really don't want us to!), other than to
say that the modeling technique about to be introduced assumes that the time
between customer arrivals and the time it takes a person to make a sno-cone are
exponentially distributed random values having a known average.
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This is stretching the truth, but it's fine for now. Cynically speaking (with some
good underlying mathematical justification), making exponential assumptions is for
convenience. It simplifies the analysis and happens to have most of the properties
we are looking for.

For the sno-cone-stand problem and all other problems in this book, this is a
reasonable assumption.

To make things easier, some new symbols and terms are needed. The
amount of time between when one customer comes to the sno-cone stand and
when the next customer comes to the sno-cone stand (whether or not the second
customer decides to go to Smoothy-Cream) is known as the interarrival time.
The average time between customers is known as the mean interarrival time.
(The words average and mean are interchangeable.)

The term mean, however, is used more frequently.

We can indicate the frequency with which customers arrive at the sno-cone stand
either by stating the mean interarrival time or the mean arrival rate (from now
on referred to simply as the arrival rate), since one is the inverse of the other.
However, it is more common to use the arrival rate, which is denoted by the
standard symbol X.

By "standard symbol" we mean a notation system generally accepted and under
stood by the performance evaluation community. The notation used throughout
this book is consistent with that used by others.*

In our example X = 1. That is, customers arrive at the average rate of one
customer per minute.

Similarly, we can refer to the mean service time and mean service rate
(simply service rate), which are the values associated with how long it takes the

*P. J. Denning and J. P. Buzen, "The operational analysis of queueing network models,"
Computing Surveys 10, 3(September 1979), 225-261. E. D. Lazowska, J. Zahorjan, G. S. Graham,
and K. C. Sevcik, Quantitative System Performance, Prentice Hall, Englewood Cliffs, N.J., 1984.
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attendant to take care of a customer on average. Service demand is synonymous
for service time. You can think of a customer as "demanding" a certain amount
of the attendant's time in order to be serviced. A customer's service demand is
denoted by the standard symbol D. In this problem the demand of the customer
depends on the attendant. The slower attendant, Bill, takes longer to service
customers than does the faster attendant, Fran, meaning that customers will
demand more of Bill's time than they will of Fran's. Therefore, every customer
demands DFnn = | minute of service if Fran is the attendant and DBin = \
minute of service if Bill is the attendant. However, in the solution technique
we are presenting, the service requirement of a customer is often conveniently
expressed as a rate. Therefore, we denote the mean service rate by the symbol /x.

The use of /x, A, and D causes no problems as long as all customers are statistically
identical. Systems in which individual customers have different demands and/or
different arrival rates are known as multiclass systems and must be handled more
carefully. Multiclass systems are discussed in Chapter 3.

Since rates and times are inverse quantities, p, = \/D. In our example, /xpran = 3
and /ZBiu = 2, meaning that Fran can take care of 3 customers per minute on
average, and Bill can take care of 2 customers per minute on average.

The next step is to determine the average number of customers processed
each minute, depending on the attendant. This value is known as the throughput
and is denoted by X. If we can find this value, then the amount of money made
each minute will simply be 3X dollars. The goal is now to derive an expression
for X for each attendant.

At any given time, there can be zero, one, two, or three people at the
window. We can think of these as four states of the sno-cone-stand operation,
as shown in Figure 1.2. We denote each of these states with a number, which
is the same as the number of people in line when the system is in that state.
For example, the system is in state 0 when there are no people in line, in state
1 when there is one person in line, and so on. Therefore, all possible states are
0, 1,2, and 3. Associated with each state / is the probability P, that if Mr. K
were to drive by the stand at a random time (which he does quite often), he
would see / people at the window. In other words, there is a Pi probability that

( Q Q G O
\ x / i / i

Figure 1.2 State Diagram of the Sno-Cone Stand
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the system is in state /. Note that the sum of all the P/'s must be 1, since the
system must be in one of the four states at any time. When the sno-cone stand
is in state 0, there is no one at the window and the attendant is idle. When the
sno-cone stand is in any of the other states, there is at least one person at the
window and the attendant is busy (being utilized). Therefore, Po is the fraction
of time the attendant is idle. The fraction of the time the attendant is not idle
is known as the utilization, U. Thus U = 1 — Pq = P\ + Pi + P3.

Processor utilization is another performance metric often of interest. The method
in which throughput will be calculated depends on knowing the utilization.

Figure 1.2 is a state transition diagram. Such diagrams are helpful in
analyzing systems like our sno-cone stand.

The diagram is more formally known as a Markov diagram and its special proper
ties arise from the fact that we have chosen to use the exponential distribution to
model service and arrival times. This distribution has a so-called "memoryless"
property which makes it easy to work with.

Markov processes are memoryless because, for any state the system can
enter, the next state entered depends solely on the current state of the system.
States visited previously to the current state and the amount of time spent in the
current state or previous states have no bearing on the next transition. This allows
time to be factored out of the analysis, which is a BIG help.

At any time, we think of the sno-cone stand as being in exactly one of the four
states, which are represented by circles in the diagram. At every "instant" in
time, one of two things will happen: Either the state of the sno-cone stand will
not change, or the state will change due to the arrival or departure of a customer.
For example, if the current state is state 1, the only things that can happen in the
next instant of time (aside from nothing happening) are the arrival of a customer
(in which case the new state is state 2) or the departure of a customer (in which
case the new state is state 0). It is important to realize that at most one "thing"
can happen in a single instant of time, and it takes absolutely no time to change
state (traverse an arc of the diagram). More specifically, in the very next instant
of time, either the state will not change, exactly one customer will arrive, or
exactly one customer will depart.
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This, too, is a little bit of a lie. Actually, multiple arrivals (or departures) are
assumed possible, but only with a very small probability that can be ignored. In
operating systems, this is okay since systems are driven by a common clock and
at most one process is in control of the CPU at any instant.

The possibility of more than one customer arriving or departing simultaneously
does not exist since we can think of the amount of time between one "instant"
and the next as being as small as necessary to distinguish between the two
events. This explains why there is no arc from state 0 to state 2, for example.

The arcs of the diagram are labeled with the rates associated with the
change in state they represent. For example, if the current state is state 1, a
customer will arrive at rate X, increasing the length of the line to 2, and the
customer currently being served will depart with rate /x, reducing the length of
the line to 0. If in state 0, no departures are possible (there is no one at the
window), and if in state 3, only a departure will cause a change in state. The
arc leaving state 3 that also leads to state 3 represents people who arrive, see
three people in line, and go to Smoothy-Cream, leaving the state unchanged.

Suppose that we begin by letting an instant in time be defined as 1 second.
This is probably small enough to exclude the possibility of more than one
customer arriving or departing in an instant. If, at every instant of time, we
were to note the state of the sno-cone stand and compare it with the previous
state, we could determine which event occurred to cause a change in state, if
any. In other words, we could tell which arc was traversed during the last
instant, or determine that no arc was traversed.

The issue being addressed here is that of measurement. Values that serve as input
parameters to the model must be obtained in some fashion. In this case, X, p,Bm,
and jxpran are required. Even though we assumed that Mr. K knew these values
a priori, in reality they came from measurement data. Mr. K may have obtained
the value for X by observing other sno-cone stands in the area and counting the
number of customer arrivals during some time interval. The rates at which Fran
and Bill can fill orders could have been determined by testing them during the job
interview (e.g., each was asked to make 100 sno-cones and the average time was
determined).

In computer systems, measurements are usually made by a special piece of
hardware and/or software called a monitor. Monitors vary in sophistication, but
usually provide data such as the number of jobs in the system at a given time, and
the demands placed on system resources by various jobs.



1 4 S y s t e m D e s i g n I : S i n g l e S t a t i o n C h a p . 1

Since our standard time unit is 1 minute, let's say that at every second we were
able to total up the number of times each arc was traversed in the preceding
60 seconds and keep an average of this count for each arc. After we have
observed the sno-cone stand for a long time, these averages would tend toward
stable values for each arc. We would also be able to calculate the probability
of being in a state by calculating the fraction of time spent in that state. These
probabilities would also tend toward stable values.

The average number of times an arc is traversed per standard time unit is
thought of as the amount of flow along that arc. It is obvious that the amount of
flow along an arc is heavily dependent on being in the state from which that arc
departs. The flow along an arc is simply the product of the probability of being
in the state from which the arc departs and the rate associated with the arc. For
example, the flow along the arc departing state 0 is XPo. Remember that after
observing the sno-cone stand for a long period of time, these flow values and
state probabilities tend to settle down to stable values. This concept is known
as steady state, meaning that the probability of being in a state is steady over
a long period of time. Steady state implies that for any state, the amount of
flow into that state must be equal to the amount of flow out of that state. This
only makes sense. The analogy of water flowing through pipes between holding
basins is valid. If the amount of flow out of a basin were larger than the flow
in, conservation of flow would be violated. Over a long period of time all the
water would drain out. Steady state would not exist.

This is important stuff! Read it a couple of times.

Remember that the throughput of the attendant is the average number of
people that he or she processes in a minute. This is the same as summing the
flows of all the arcs that are traversed due to the departure of a customer. In
our example, these are all the arcs labeled with /x. To put it another way: total
throughput is the sum of the individual state throughputs. The throughput in
state 0 is 0, since no one is at the window. The throughput in state 1 is /x, since
there is a single customer at the window who departs (i.e., is served) at rate /x.
Similarly, the rates at which customers are served in states 2 and 3 are both
/x. Taking all of this into consideration, we now have a way to solve for the
probabilities of being in each state. Knowing these steady-state probabilities,
we can determine the throughput for each attendant by calculating the sum of
the flow across the arcs labeled with p,. We know the following:

• Flow along an arc is the product of the probability of being in the state
from which the arc departs and the rate associated with that arc.
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• The sum of all the flows into a state is equal to the sum of all the flows
out of that state.

• The sum over all of the P/'s is 1, since at any time the system must be in
one of the four states.

• X and /x are known values. (X, the customer arrival rate, is one customer
per minute, p,, the service rate, is the inverse of D, which is dependent
on the attendant.)

Given these facts, we can write a system of equations that can be solved
to yield the steady-state values of the P/'s. For each state in the diagram there
is a balance equation, which states that the flow into that state is equal to the
flow out of that state. The balance equation for state 0 is

\xPx = XP0

The left-hand side of the equation is the flow into state 0. Because only
one thing can happen at a time, the only way to get into state 0 (i.e., no one
at the stand) is to have a customer leave while in state 1. The probability of
being in state 1 is P\ and the rate at which customers leave state 1 is /x. Thus
the flow rate into state 0 (from state 1) is /xPi. Similarly, the right-hand side of
the equation is the flow out of state 0. It represents a customer arriving at the
sno-cone stand when there are no customers. The balance equation for state 1
is

XP0 + /xP2 = A./>i + tiP\

The left-hand side represents the flow into state 1 and is the sum of arrivals
when the system is in state 0 (i.e., XPo) and departures when the system is in
state 2 (i.e., p,P-i). The right-hand side represents the flow out of state 1 due to
arrivals (i.e., XP\) and departures (i.e., piP\).

Each state has a corresponding balance equation. The other balance equa
tions can be written in a similar manner and are given below.

These are the global balance equations which yield the steady-state solution.

However, the balance equations by themselves are not enough to solve the
system of equations. Even though, in this case, there are four equations in
four unknowns (the unknowns are the P, 's—remember that /x and X are known
values), one of the equations is redundant. The fact that all the P,'s sum to 1
provides the additional equation that allows the system to be solved. The entire
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system of equations for solving the diagram is

/ x P i = X P 0 ( 1 )

X P o + l i P i = X P x + i i P x ( 2 )

X P x + n P i = X P 2 + i i P 2 0 )

X P 2 + X P 3 = X P 3 + p , P 3 ( 4 )

P o + P \ + P i + P i = 1 ( 5 )

To see that one of the equations is redundant, consider the following diagram:

The balance equation for state A, flow in = flow out, is pPs — XPA. The balance
equation for state B is XPA = /xPfl. These two equations are identical (i.e., one
is redundant).

By using substitution of variables, the system can be solved in terms of
Po as follows:

( 1 ) =▶ P x = - P 0 ( 6 )

X2
( 2 , 6 ) =▶ P i = — P o ( 7 )

l 3

0 , 6 , 7 ) =▶ P 3 = - T P o ( 8 )

As you can see, equation (4) is redundant [since it reduces to P3 =
(V/x)P2 = (*3/M3)A)]- However, given equations (6) to (8) we can state
(5) in terms of Po:

A . X 2 X 3
Po + -Po + -7^0 + -7^0 = 1

/ x / x 2 p ?
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which, when rewritten as below, gives the solution to Po.

10 ~ ~ i + V m + * 7 m 2 + * 3 / m 3 ( 9 )

Ta da! Given any values for A. and D (from which /x is calculated), (9) will
yield the value of P0, which can then be used in (6) to (8) to yield values for Pi,
Pi, and P3. Table 1.1 shows the final results when the proper values for X and
D are substituted for the cases of Fran and Bill. The steady-state probabilities
Po • • P3 are shown for both individuals.

Other interesting quantities can readily be found once the steady-state probabilities
P0, Pi, P2, and P3 are known. For example, the average number of customers at
the window is 1 x Px + 2 x P2 + 3 x P3 (i.e., 0.45 for Fran and 0.73 for Bill).
Also, the rate at which customers leave in a huff for Smoothy-Cream is XP3 (i.e.,
0.025 customer per minute for Fran and 0.067 for Bill).

For example, if Mr. K were to drive by when Fran is working, he would
see Fran idle f^ (i.e., 67.5%) of the time and would see three customers at the
window ^ (i.e., 2.5%) of the time. Similarly, when Bill is working, he is idle
only -^ (i.e., 53.3%) of the time and has 3 customers ^ (i.e., 6.7%) of the time.

Throughput, which is the average number of customers processed per
minute, is calculated by summing the amount of flow across arcs labeled with
/x. That is, X = /xPi + p,P2 + /xP3. Another way to calculate throughput is
as follows. The percentage of time that an attendant is idle (in steady state)
is P0. Thus the percentage of time an attendant is working (i.e., utilization) is
U = 1 — Po. While the attendant is working, customers are being pumped out of
the system at rate /x. Therefore, if utilization is known and the service demand
is known, the throughput of the attendant is given by X = pXJ = U/D. This
relationship, known as the utilization law, is stated as U = XD. The utilization
law is useful because, given any of the two variables U, X, or D, the third is
easily computed. The amount of revenue per minute is simply the product of
the throughput for each attendant and the amount of money made per customer,
which is $3. The cost of each employee per minute is subtracted from the
revenue gained per minute to yield the profit per minute. These calculations are
shown in Table 1.1.

Given these results, we would advise Mr. K to hire Fran instead of Bill
since she will bring in a net profit of 3/6 more per minute than Bill. The moral of
the story is that first impressions are not always valid and that the assumptions
made must be clearly understood since the outcome depends upon them.
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TABLE 1.1 Results of Comparison of Fran and Bill

Results Fran Bill

X (arrival rate)
D (service demand)
Steady state probabilities:

Pn

1
1/3

27/40

1
1/2

8/15
1 0

Pi

Pi

9/40 4/15

3/40 2/15

P3
1/40 1/15

U (utilization)

X (throughput)

Revenue per minute
Employee cost per minute
Profit per minute

1 - P o
= 1 - 27/40
= 13/40

U/D
= 13/40 x 3
= 39/40

(39/40)($3) * $2.93
$0.20
$2.93 - $0.20 = $2.73

1 - P o
= 1-8/15
= 7/15

U/D
= 7/15 x 2
= 14/15

(14/15)($3) ^ $2.80
$0.10
$2.80-$0.10 = $2.70

1.3 SUMMARY

Table 1.2 gives a brief summary of the notation and important formulas intro
duced in this section.

TABLE 1.2 Summary

X ar r i va l ra te
D service demand
/x service rate (^)
U u t i l i z a t i o n
X t h r o u g h p u t

U = XD utilization law

EXERCISES

1.1 * Bill really wants this job, so he tells Mr. K that he will work for less than $6
per hour. What pay rate will he have to accept in order to be competitive with
Fran?

1.2 ** Mr. K has interviewed another prospective employee, Bob. Bob has experience
with sno-cones and can complete a transaction in 10 seconds. However, he charges
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$18 per hour for his expertise. How much profit does Bob make per minute, and
how does he rank with respect to Fran and Bill?

1.3 ** Suppose that Bill improves his service time by 5 seconds. Thus, he completes
a transaction in 25 seconds. How does he compare to Fran now?

1-4 **** Assuming that all other problem parameters are as originally stated, what
is the minimum amount of time by which Bill must improve his service time in
order to be competitive with Fran?

1.5 * Mr. K decides that his price is too high and lowers it. How much will he have
to charge per sno-cone in order for Bill and Fran to be competitive? (Note: all
other problem parameters are as originally stated.)

1.6 ** Suppose that the customer arrival rate changes to 1 customer every 2 minutes.
Which applicant is more profitable, Bill or Fran? By how much?

1.7 **** For what arrival rate is Bill competitive with Fran? What are the ranges of
arrival rates for which a) Bill is more cost-effective than Fran; b) Fran is more
cost-effective than Bill?

1.8 *** What if the maximum line length changes from 3 to 4? Who is more cost-
effective, Fran or Bill? By how much?

1.9 *** Assuming all other parameters are as originally stated, for what range of line
lengths will: (a) Bill be more cost-effective; (b) Fran be more cost-effective?
Justify your answer.




