
© Copyright IBM Corporation 2014 Trademarks
Linux on 4 KB sector disks: Practical advice Page 1 of 14

Linux on 4 KB sector disks: Practical advice
Make sure Linux is firing on all cylinders

Roderick W. Smith (rodsmith@rodsbooks.com )
Consultant and author

06 March 2014

Advanced Format disks use 4,096-byte sectors rather than the more common 512-byte sectors.
This change is masked by firmware that breaks the 4,096-byte physical sectors into 512-byte
logical sectors for the benefit of the operating system, but the use of larger physical sectors has
implications for disk layout and system performance. This article examines these implications,
including benchmark tests illustrating the likely real-world effects on some common Linux
file systems. As Advanced Format disks have become the norm, understanding how to cope
with these disks is a vital skill for anyone who wants to avoid serious performance penalties
associated with suboptimal configuration.

Read more by Roderick Smith

Browse all of Roderick's articles on developerWorks. Or search for another author, product,
topic, or type of content in our extensive technical library.

If you're familiar with disk structure, you know that disks are broken down into sectors, which are
typically 512 bytes in size; all Read or Write operations occur in multiples of the sector size. When
you look more closely, hard disks include extra data between sectors. The disk uses these extra
bytes to detect and correct errors within each sector.

When the sector size is increased from 512 bytes to a larger value, more efficient and powerful
error-correction algorithms can be used. Thus, changing to a larger sector size has two practical
benefits: improved reliability and greater disk capacity — at least in theory.

Advanced Format disks translate each 4,096-byte physical sector into eight 512-byte logical
sectors. To the firmware, operating system, and all disk utilities, the disk appears to have 512-
byte sectors, even though the underlying physical sector size is 4,096 bytes. However, changing
the apparent sector size in firmware can degrade performance. To understand why, you need to
understand something about file system data structures and how partitions are placed on the hard
disk.

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/
mailto:rodsmith@rodsbooks.com
http://www.ibm.com/developerworks/views/global/libraryview.jsp?site_id=1&contentarea_by=global&sort_by=Date&sort_order=2&start=1&end=6&topic_by=-1&product_by=-1&type_by=All%20Types&show_abstract=true&search_by=roderick%20smith
http://www.ibm.com/developerworks/library/


developerWorks® ibm.com/developerWorks/

Linux on 4 KB sector disks: Practical advice Page 2 of 14

Why performance is affected by file system data structures
Most modern file systems use data structures that are 4,096 bytes or larger. Thus, most disk I/O
operations are in multiples of this amount. Consider what happens when Linux wants to read or
write one of these data structures on a new disk with 4,096-byte sectors. If the file system data
structures happen to align perfectly with the underlying physical sector size, a Read or Write of a
4,096-byte data structure results in a Read or Write of a single sector. The hard disk's firmware
doesn't need to do anything extraordinary, but when the file system data structures don't align
perfectly with the underlying physical sectors, a Read or Write operation must access two physical
sectors. Figure 1 illustrates this difference:

Figure 1. Disk data structures can straddle physical sectors on an Advanced Format disk

In theory, Read operations should be affected by misalignment less than Write operations. In
the case of a disk read, the disk's read/write head is likely to pass over both sectors in quick
succession, so the firmware's task of returning the 4 kibibyte (KiB) data structure is relatively
simple. In contrast, writes of misaligned data structures require the disk's firmware to read two
sectors, modify portions of both sectors, and then write two sectors. This operation takes longer
than when the 4,096 bytes occupy a single sector. Thus, performance is degraded. In practice,
Read operations can sometimes be affected as badly as Write operations.

How can you tell if your data structures are properly aligned? Most file systems align their data
structures to the beginning of the partitions that contain them. Thus, if a partition begins on a



ibm.com/developerWorks/ developerWorks®

Linux on 4 KB sector disks: Practical advice Page 3 of 14

4,096-byte (eight-sector) boundary, it's properly aligned. However, in the years before 2010
(approximately), Linux partitioning tools didn't create partitions aligned in this way. Even today,
some pitfalls remain, so exercise caution when you create your partitions. (To see how to do the
job with common Linux partitioning software, go to the upcoming section, Aligning partitions.)

Testing parameters

To learn just how important proper alignment is, I performed tests using three Advanced Format
disks on three computers:

• A 1TB Western Digital WD-10EARS Advanced Format drive — one of the first Advanced
Format disks introduced (late 2009) on a computer using an NVIDIA MCP61P chip set and
a 64-bit 2.6.32.3 kernel. The results from this test appeared in the first version of this article,
published in 2010.

• A 2TB Seagate ST2000L003 drive, purchased in 2012, in a computer with a more recent
AMD 760G/SB710 chipset and a 64-bit 3.4.1 kernel.

• A 3TB Toshiba DT01ACA300 drive, purchased in late 2013, in a computer with an Intel® H77
chipset and a 64-bit 3.11.7 kernel.

In all three tests, I partitioned the disk using the globally unique identifier (GUID) Partition Table
(GPT) system, with the aligned partitions beginning at logical sector 40 and the unaligned
partitions beginning at logical sector 34 (the first available sector when using a GPT disk with its
default partition table size). File systems tested were the third extended file system (ext3), the
fourth extended file system (ext4), ReiserFS (version 3), the Journaled File System (JFS), the
Extents File System (XFS), and the B-tree file system (Btrfs).

In all tests, a script performed a series of disk I/O operations, including creating a fresh file
system, extracting an uncompressed Linux kernel tarball to the test drive, copying the tarball to
the drive, reading the just-uncompressed files on the test drive, reading the tarball from the drive,
and removing the Linux kernel directory. The source Linux kernel tarball was stored on another
disk, and for read tests, output was directed to /dev/null. After each write test, the test disk was
unmounted as a way of ensuring that no operations remained in the Linux disk cache. Figures
reported include the time required to perform the Unmount operation.

The kernel tarball was 365 mebibytes (MiB) in size for the first test and 451MiB for the second and
third tests. All disks had 64MiB caches, so the tarball greatly exceeded the disk's cache size in
both tests. I ran each test sequence six times for each file system, three times on properly aligned
and three times on improperly aligned partitions. Between-run variability was small. The average
unaligned time was divided by the average aligned time to determine how much of a performance
hit improper alignment imposed. A value above 1.00 indicates some performance penalty for
improper alignment.

Benchmark results
All disks showed impairment for misaligned partitions, with the 2009 Western Digital disk and the
2013 Toshiba disk showing a similar pattern and the 2012 Seagate model displaying a different
pattern. Therefore, I describe these results in two groups for each pattern of results.



developerWorks® ibm.com/developerWorks/

Linux on 4 KB sector disks: Practical advice Page 4 of 14

Western Digital and Toshiba test results

Many of the tests that were run in 2010 on the Western Digital disk produced modest impairment.
The values for file system creation ranged from 0.96 (for XFS) to 7.94 (for ReiserFS), with a mean
value of 2.79. On the 2013 Toshiba tests, file system creation values ranged from 1.22 (for ext4)
to 1.82 (for both ext3 and XFS), with a mean of 1.57. Because file system creation typically is
done only rarely, this impairment is not important. The Western Digital read tests produced ratios
ranging from 0.95 to 1.25, indicating no more than a 25% speed penalty, as detailed in Figure 2.
A value of 1.00 means no penalty; higher values mean worse performance. The Toshiba values
range from 0.94 to 1.11, as shown in Figure 3.

Figure 2. Read performance penalty for using unaligned partitions on a Western Digital
WD-10EARS disk



ibm.com/developerWorks/ developerWorks®

Linux on 4 KB sector disks: Practical advice Page 5 of 14

Figure 3. Read performance penalty for using unaligned partitions on a Toshiba
DT01ACA300 disk

Large-file write performance also suffered only modest impairment. On the Western Digital disk,
these values ranged from 1.10 (for XFS and JFS) to 6.02 (for ReiserFS), with a mean of 2.10; on
the Toshiba, they ranged from 1.03 (for ext4) to 2.38 (for ReiserFS), with a mean of 1.34. Much
of that elevation is attributable to ReiserFS's sensitivity. Removing it produced means of 1.31 and
1.13 for the remaining five file systems on the Western Digital and Toshiba drives, respectively.
File deletion effects were similar. On the Western Digital drive, these ranged from 1.04 (for XFS) to
4.78 (for JFS), with a mean of 1.97; on the Toshiba, the range was from 1.05 (for ext4) to 1.59 (for
JFS), with a mean of 1.30.

The biggest write performance effects occurred with small file creation (extracting the kernel
tarball). On the Western Digital, effects on tarball extraction ranged from 1.04 (for ext4) to 25.53
(for ReiserFS), with a mean of 10.9. The second-best performer in this test was XFS, with a value
of 1.82. On the Toshiba, the effects ranged from 1.44 (for Btrfs) to 3.17 (for ReiserFS), with a mean
of 1.92. Because these figures are ratios of unaligned-to-aligned performance, a value of 10.9
means that a tarball extraction that takes 10 seconds on a properly aligned partition takes 109
seconds on an improperly aligned partition—a huge difference!

Figure 4 summarizes these write performance impairments across all file systems for the Western
Digital disk, and Figure 5 does the same for the Toshiba disk. As before, a value of 1.00 means no
penalty; higher values mean worse performance.



developerWorks® ibm.com/developerWorks/

Linux on 4 KB sector disks: Practical advice Page 6 of 14

Figure 4. Write performance penalty for using unaligned partitions on a Western Digital
WD-10EARS disk

Figure 5. Write performance penalty for using unaligned partitions on a Toshiba
DT01ACA300 disk

Seagate test results
Tests on the Seagate ST2000L003 disk produced surprisingly different results. The file system
creation penalties ranged from 1.09 (for ReiserFS) to 1.97 (for JFS), with a mean of 1.42, which is
similar to the Toshiba results.

The surprises begin with the read access results, shown in Figure 6. Read performance suffered
significantly more on the Seagate than on the Western Digital or Toshiba drives, ranging as high as



ibm.com/developerWorks/ developerWorks®

Linux on 4 KB sector disks: Practical advice Page 7 of 14

8.54 for small-file reads under JFS, with a mean value of 4.13. Even large-file read performance
suffered, with a mean value of 1.88 and a high of 3.76 (for ReiserFS).

Figure 6. Read performance penalty for using unaligned partitions on a Seagate
ST2000L003 disk

The Seagate disk's write penalties are shown in Figure 7. Small-file creation penalties ranged from
1.23 (for Btrfs) to 3.04 (for ext3), with a mean of 1.98. Large-file creation penalties ranged from
1.04 (for Btrfs) to 3.87 (for ReiserFS), with a mean of 1.78. For most file systems, the greatest
penalty was in file deletions, which ranged from 1.23 (for Btrfs) to 7.75 (for ext4), with a mean of
4.14.



developerWorks® ibm.com/developerWorks/

Linux on 4 KB sector disks: Practical advice Page 8 of 14

Figure 7. Write performance penalty for using unaligned partitions on a Seagate
ST2000L003 disk

Analysis of test results

The difference in the pattern of results among the three hard disks is surprising. Because I
conducted these tests over almost four years, the variables (disk brand and model, nondisk
hardware, and Linux kernel version) make it impossible to say precisely what caused these
differences. I caution against concluding anything about specific disk brands; in particular, the
lesser impairment of the Toshiba compared to the Western Digital disk may be a result of improved
kernel features or motherboard disk hardware. Ultimately, though, the different pattern of results
is unimportant for most people, because the conclusion is the same: Using unaligned partitions
produces significant performance impairment.

Note: these tests do not reflect overall performance across file systems. You should not
conclude, for instance, that ReiserFS is a poor performer because it produced some of the largest
performance differences. ReiserFS is, however, more sensitive than most others to improper
alignment, at least in certain important tests.

If you use a logical volume manager (LVM), be aware that the alignment rules for LVMs are the
same as for partitions. Although you needn't be concerned about the alignment of logical volumes
within LVMs, you should attend to the alignment of the LVM partitions themselves. A spot check of
a few file systems using LVMs replicated the preceding results.

As a practical matter, what does all this mean? You should begin by determining the physical
sector size of your disk. If you find that you've got an Advanced Format drive, you should align
your partitions properly.



ibm.com/developerWorks/ developerWorks®

Linux on 4 KB sector disks: Practical advice Page 9 of 14

Determining physical sector size

In theory, the Linux kernel should return information on the physical sector size in the /sys/
block/sdX/queue/physical_block_size pseudo-file and on the logical sector size in the /sys/
block/sdX/queue/logical_block_size pseudo-file, where sdX is your device's node name (typically,
sda, sdb, and so on). In practice, however, the physical block size information is often spurious —
in my experience, the kernel reports accurate information only for some disks, and the accuracy of
the report also varies with the kernel version. This means that disk utilities can't reliably detect the
presence of such disks.

So you may need to look up your drive's specifications on the manufacturer's website or in other
ways. The /sys/block/sdX/device/model pseudo-file holds the device's model number, so you
can look there, and then check with the manufacturer. If in doubt, assume that your disk is an
Advanced Format model — most new disks are.

Western Digital and Toshiba both identify their Advanced Format drives as such with stickers
on the drives themselves. However, the Western Digital stickers imply that only Windows XP
has problems with these drives, and Toshiba's Advanced Format identification doesn't note any
possible performance issues. As my benchmark results reveal, Linux users must exercise extreme
caution with these drives. The Seagate Advanced Format drives are not clearly identified as such
on their labels.

Aligning partitions

RAID and SSD alignment issues

Redundant array of independent disks (RAID) levels 5 and 6 — and solid-state drives (SSDs)
— have alignment issues similar to those of Advanced Format drives. For RAID, alignment
should be done to match the size of data stripes used to create the array — typically, 16KiB
to 256KiB. For SSDs, alignment should match the erase block size for the drive, which is
typically on the order of 512KiB, although I've heard of units with alignment requirements as
high as 3MiB. The default alignment of 2,048 sectors (1,024KiB) that's emerging as a new
standard works well with most RAID stripe sizes and SSD devices. However, because some
SSDs exceed this value, you should check your manufacturer's specifications.

Published test results indicate a performance penalty of about 5% to 30% for improper
alignment on RAID arrays, which is much less than the penalty for improperly aligning an
Advanced Format drive. When creating a RAID array from Advanced Format disks, you don't
need to take any extra steps. Because the RAID alignment values are multiples of the 4,096-
byte alignment that Advanced Format drives require, the needs of both technologies are met
if you align partitions as for a RAID array of disks with 512-byte physical sectors.

Most or all of the Western Digital Advanced Format drives include a jumper you can set for
Windows XP compatibility. This jumper shifts the sector numbering by 1, a quick and dirty fix for
the common situation in Windows XP of using a single cylinder-aligned partition that spans the
entire drive. However, this jumper creates problems if you use multiple partitions or if you use
modern partitioning software, so I strongly recommend against trying it. Instead, use your Linux
partitioning software to create properly aligned partitions. (Neither Seagate nor Toshiba provides
such a jumper on its drives.)



developerWorks® ibm.com/developerWorks/

Linux on 4 KB sector disks: Practical advice Page 10 of 14

Three families of master boot record (MBR) and GPT partitioning tools are available for Linux, and
each offers its own method of aligning partitions. If you have an Advanced Format drive, your best
option is to run the latest Linux partitioning software available.

The fdisk family

The fdisk family, which ships as part of the util-linux or util-linux-ng package on most distributions,
enables fairly direct editing of MBR data structures, but it can't create or modify file systems.
Through util-linux version 2.17, fdisk didn't offer any direct support for eight-sector alignment of
partitions; alignment remained cylinder-based. This changed with version 2.18, when fdisk began
setting the first partition's start point at sector 2,048 by default. If you create all your partitions
in fdisk using partition sizes that are multiples of 1MiB or larger, fdisk maintains your partition
alignment on 1MiB multiples, which are in turn multiples of eight sectors.

The risk with recent versions of fdisk is that if the disk began with improper alignment, fdisk won't
automatically correct for that when you create subsequent partitions. You can also enter manual
partition start sectors that are improperly aligned. Thus, when you use fdisk, always check your
partition start points to ensure that they're multiples of 8. While you're at it, verify that the program
uses sectors as its unit values; even versions later than 2.17 can use cylinders if you type u at
the main menu. Typing p produces a display that you can use to check these details, as shown
in Listing 1. Although the unit value is not explicitly stated, it's clear that the units are in sectors,
because the start and end values are so large. In this case, the final end value is on the final
sector of the disk: Compare it to the total sectors value near the start of the output. Note that fdisk
2.17 and earlier are likely to complain that partitions don't end on cylinder boundaries when they're
properly aligned. You can ignore this warning.

An example fdisk output demonstrating proper alignment
Command (m for help): p

Disk /dev/sdb: 2000.4 GB, 2000398934016 bytes
256 heads, 63 sectors/track, 242251 cylinders, total 3907029168 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x00000000

Device Boot         Start         End      Blocks   Id  System
/dev/sdb1            2048     2097151     1047552   83  Linux
/dev/sdb2         2097152  3907029167  1952466008   83  Linux

When manipulating MBR disks, be aware that the alignment of extended partitions is unimportant.
These partitions hold one-sector data structures that define logical partitions, so in a real sense,
extended partitions can't be properly aligned. Take care to align primary and logical partitions,
though.

The libparted library

The libparted library powers many Linux partitioning tools and supports both MBR and GPT
partitioning schemes. libparted 3.1 comes with the text-mode parted partitioning tool, and since
parted 2.2, you can align to MiB boundaries by specifying start and end points in units of 1MiB



ibm.com/developerWorks/ developerWorks®

Linux on 4 KB sector disks: Practical advice Page 11 of 14

or larger. If you want to verify the alignment, type unit s to switch to sector units and check the
partition start points, much as you would with fdisk, as shown in Listing 2:

An example parted output demonstrating proper alignment
(parted) unit s
(parted) print
Model: ATA ST2000DL003-9VT1 (scsi)
Disk /dev/sdb: 3907029168s
Sector size (logical/physical): 512B/512B
Partition Table: gpt
Disk Flags:

Number  Start       End          Size         File system  Name     Flags
 1      2048s       2097151s     2095104s     ntfs         Windows
 2      2097152s    3907029167s  3904932016s               Linux

Using the graphical user interface (GUI) GParted program, be sure to set the Align to value to
MiB in the Create new Partition dialog box, shown in Figure 8. Doing so should produce properly
aligned partitions. You can bring up a partition's Information dialog box to learn what its start and
end sectors are in absolute terms.

Figure 8. Take care to set the Align to value to MiB when creating partitions with GParted

GPT fdisk utilities
The GPT fdisk utilities are useful only with GPT disks. Versions before 0.5.2 don't perform any
alignment, although you can align partitions manually by specifying appropriate start sector
numbers. Versions 0.5.2 and 0.6.0 through 0.6.5 adjust the start sectors of all partitions to an
eight-sector boundary for large disks (those larger than about 800GiB), but not for smaller disks.
Version 0.6.6 introduces a Windows-style 2,048-sector (1MiB) alignment for all unpartitioned disks
and attempts to infer the alignment used in the past on disks with existing partitions.

With versions 0.5.2 and later, you can manually adjust the alignment value with the l option on
the experts' menu. This option takes a number of sectors as an option. Set it to 8 or a multiple of
that amount for proper alignment with Advanced Format disks. The verify option (v on any menu)
reports any partitions that aren't properly aligned based on the current alignment value; gdisk
displays partition start and end points in sector values. Listing 3 demonstrates use of this program
to verify proper partition alignment:



developerWorks® ibm.com/developerWorks/

Linux on 4 KB sector disks: Practical advice Page 12 of 14

An example gdisk output demonstrating proper alignment

Command (? for help): p
Disk /dev/sdb: 3907029168 sectors, 1.8 TiB
Logical sector size: 512 bytes
Disk identifier (GUID): 4B18D328-5E8E-49DB-8690-9FE89807ABF8
Partition table holds up to 128 entries
First usable sector is 34, last usable sector is 3907029134
Partitions will be aligned on 8-sector boundaries
Total free space is 6 sectors (3.0 KiB)

Number  Start (sector)    End (sector)  Size       Code  Name
   1              40          409639   200.0 MiB   8300  Unused /boot
   2          409640          819239   200.0 MiB   8300  Unused /boot
   3          819240      3907029134   1.8 TiB     8E00  Linux LVM

Command (? for help): v

No problems found. 6 free sectors (3.0 KiB) available in 1
segments, the largest of which is 6 (3.0 KiB) in size.

Conclusion

At present, the safest assumption is that any new hard disk you buy uses Advanced Format
technology. Of course, you can check manufacturer spec sheets to confirm this assumption, but
aligning partitions as for an Advanced Format disk has no detrimental effects on older disk types
except when using obsolete utilities or operating systems.

Today, some external disks use 4,096-byte sectors, but internal disks use sector size translation.
This may change in the future. If you encounter a drive with 4,096-byte sectors but with an option
to use the true sector size, you may want to use it; however, be aware of some caveats.

Software from the BIOS up may make assumptions about a hard disk's sector size. If the BIOS
contains such an assumption, your computer probably won't boot from a disk that has 4,096-byte
sectors and lacks firmware translation to 512-byte sectors. Using the latest software may help you
work around problems, as may using a conventional disk as the boot disk, restricting your new-
technology disk to use as a data disk.



ibm.com/developerWorks/ developerWorks®

Linux on 4 KB sector disks: Practical advice Page 13 of 14

Resources

Learn

• "Creating a RAID disk array on PowerLinux " (Breno Leitao, developerWorks, January 2013):
Read this tutorial to see how you can create a RAID device on PowerLinux machines using
an array of disks, including how to identify and format the disks, combine them in a RAID
array, create a partition, and create a file system on this partition.

• "Learn Linux, 101: Create partitions and filesystems" (Ian Shields, developerWorks,
December 2012): Learn how to create partitions on a disk drive and how to format them for
use on a Linux system as swap or data space.

• "Exploring Western Digital's Advanced Format HD Technology" (Joel Hruska, Hot Hardware,
February 2010): Read more about this technology, including Windows benchmarks.

• The white paper Advanced Format Technology (Western Digital), available in several
languages, describes Advanced Format in detail.

• A post by Tejun Heo, Linux kernel developer, describes the technical challenges of Advanced
Format drives in Linux software.

• In the developerWorks Linux zone, find hundreds of how-to articles and tutorials as well
as downloads, discussion forums, and a wealth other resources for Linux developers and
administrators.

• Stay current with developerWorks technical events and webcasts focused on a variety of IBM
products and IT industry topics.

• Watch developerWorks on-demand demos ranging from product installation and setup demos
for beginners to advanced functionality for experienced developers.

• Follow developerWorks on Twitter.

Get products and technologies

• The GNU Parted website hosts both the text-mode GNU Parted and its parent library,
libparted. GNU Parted is a mature text-mode MBR and GPT partitioning tool.

• The util-linux package includes Linux fdisk, sfdisk, and cfdisk.
• The GNOME Partition Editor (also called GParted) is a GUI partitioning tool built on libparted.
• The GPT fdisk program is a GPT-only partitioning program modeled after Linux fdisk.
• Evaluate IBM products in the way that suits you best: Download a product trial, try a product

online, or use a product in a cloud environment.

Discuss

• Get involved in the My developerWorks community. Connect with other developerWorks
users while exploring the developer-driven blogs, forums, groups, and wikis.

https://www.ibm.com/developerworks/community/blogs/fe313521-2e95-46f2-817d-44a4f27eba32/entry/configuring_the_raid_controller28?lang=en/
http://www.ibm.com/developerworks/opensource/library/l-lpic1-v3-104-1/index.html/
http://hothardware.com/Articles/WDs-1TB-Caviar-Green-w-Advanced-Format-Windows-XP-Users-Pay-Attention/
http://www.wdc.com/wdproducts/library/?id=216&type=87
http://lwn.net/Articles/377897/
http://www.ibm.com/developerworks/linux/index.html
http://www.ibm.com/developerworks/views/linux/libraryview.jsp
http://www.ibm.com/developerworks/offers/techbriefings/events.html
http://www.ibm.com/developerworks/offers/lp/demos/index.html
http://www.twitter.com/developerworks/
http://www.gnu.org/software/parted/index.shtml
ftp://ftp.kernel.org/pub/linux/utils/util-linux/
http://gparted.sourceforge.net/
http://www.rodsbooks.com/gdisk/
http://www.ibm.com/developerworks/downloads/index.html
http://www.ibm.com/developerworks/community


developerWorks® ibm.com/developerWorks/

Linux on 4 KB sector disks: Practical advice Page 14 of 14

About the author

Roderick W. Smith

Roderick W. Smith is a consultant and author of more than 20 books on UNIX and
Linux, including The Definitive Guide to Samba 3, Linux in a Windows World, and
Linux Professional Institute Certification Study Guide. He is also the author of the
GPT fdisk partitioning software, and he forked the abandoned rEFIt boot manager to
create rEFInd. He resides in Woonsocket, Rhode Island.

© Copyright IBM Corporation 2014
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Why performance is affected by file system data structures
	Testing parameters

	Benchmark results
	Western Digital and Toshiba test results
	Seagate test results
	Analysis of test results

	Determining physical sector size
	Aligning partitions
	The fdisk family
	The libparted library
	GPT fdisk utilities

	Conclusion
	Resources
	About the author
	Trademarks

